ТопЭксперт - обучение интернет-профессиям бесплатно

Title

Fan Report

Date

2009/05/24 22:05:17


Contents

1. File Report
    Table 1  File Information for CFX
2. Mesh Report
    Table 2  Mesh Information for CFX
    Table 3  Mesh Statistics for CFX
3. Physics Report
    Table 4  Domain Physics for CFX
    Table 5  Boundary Physics for CFX
4. Tabulated Results
    Table 6  Performance Results
    Table 7  Summary Data
5. Blade Loading Charts
    Chart 1  Blade Loading at 20% Span
    Chart 2  Blade Loading at 50% Span
    Chart 3  Blade Loading at 80% Span
6. Streamwise Charts
    Chart 4  Streamwise Plot of Pt and Ps
    Chart 5  Streamwise Plot of C
    Chart 6  Streamwise Plot of W
    Chart 7  Streamwise Plot of Alpha and Beta
7. Spanwise Charts
    Chart 8  Spanwise Plot of Alpha and Beta at LE
    Chart 9  Spanwise Plot of Alpha and Beta at TE
8. Blade Geometry Plots
    Figure 1  Isometric 3D View of the Blade, Hub and Shroud
    Figure 2  Meridional View of the Blade, Hub and Shroud
9. Blade Mesh Plot
    Figure 3  Mesh Elements at 50% Span
10. Blade to Blade Plots
    Figure 4  Contour of Pt at 50% Span
    Figure 5  Contour of Ptr at 50% Span
    Figure 6  Contour of Ps at 50% Span
    Figure 7  Contour of W at 50% Span
    Figure 8  Velocity Vectors at 20% Span
    Figure 9  Velocity Vectors at 50% Span
    Figure 10  Velocity Vectors at 80% Span
11. Meridional Plots
    Figure 11  Contour of Mass Averaged Pt on Meridional Surface
    Figure 12  Contour of Mass Averaged Ptr on Meridional Surface
    Figure 13  Contour of Mass Averaged W on Meridional Surface
    Figure 14  Vector of Area Averaged Cm on Meridional Surface
12. Circumferential Plots
    Figure 15  Contour of Pt at Blade LE
    Figure 16  Contour of Ptr at Blade LE
    Figure 17  Contour of W at Blade LE
    Figure 18  Contour of Pt at Blade TE
    Figure 19  Contour of Ptr at Blade TE
    Figure 20  Contour of W at Blade TE
13. Streamline Plot
    Figure 21  Velocity Streamlines at Blade TE
14. Noise Analysis
  14.1. Noise input data
      Table 8  Noise input data
  14.2. Sound Pressure Levels
      Table 9  Sound Pressure Levels
      Chart 10  Sound Pressure Levels
  14.3. Sound Power Levels
      Table 10  Sound Power Levels
      Chart 11  Sound Power Levels
  14.4. Directivity
      Chart 12  Directivity
  14.5. Overall Noise
      Table 11  Overall Noise
  14.6. Broadband Noise
      Table 12  Proudman Sound Power
      Figure 22  Isosurface at 95% of Proudman Sound Power
  14.7. Noise Sources
      Table 13  Summary of noise sources at the blade and at the final timestep
      Figure 23  Monopole Source
      Figure 24  Dipole Source
      Table 14  Summary of quadrupole sources at the final timestep
      Figure 25  Isosurface at 80% of Quadrupole Source Strength


1. File Report

Table 1.  File Information for CFX
Case CFX
File Path D:\Temp\Fan\Fan_tutorial_files\dp0\CFX\CFX\CFX_001.res
File Date 24 ��� 2009
File Time 08:06:18
File Type CFX5
File Version 12.0
 

2. Mesh Report

Table 2.  Mesh Information for CFX
Domain Nodes Elements
R1 67983 248892
 
Table 3.  Mesh Statistics for CFX
Domain Maximum Edge Length Ratio
R1 28.0689
 

3. Physics Report

Table 4.  Domain Physics for CFX
Domain - R1
Type Fluid
Location B40
Materials
Air at 25 C
     Fluid Definition Material Library
     Morphology Continuous Fluid
Settings
Buoyancy Model Non Buoyant
Domain Motion Rotating
     Alternate Rotation Model true
     Angular Velocity -rpm
     Axis Definition Coordinate Axis
     Rotation Axis Coord 0.3
Reference Pressure 1.0000e+00 [atm]
Turbulence Model SST
Turbulent Wall Functions Automatic
Domain Interface - R1 to R1 Periodic 1
Boundary List1 R1 to R1 Periodic 1 Side 1
Boundary List2 R1 to R1 Periodic 1 Side 2
Interface Type Fluid Fluid
Settings
Interface Models Rotational Periodicity
     Axis Definition Coordinate Axis
     Rotation Axis Coord 0.3
Mesh Connection Automatic
 
Table 5.  Boundary Physics for CFX
Domain Boundaries
R1 Boundary - R1 Inlet
Type INLET
Location Inflow Blade1
Settings
Flow Direction Normal to Boundary Condition
Flow Regime Subsonic
Mass And Momentum Stationary Frame Total Pressure
     Relative Pressure Pt
Turbulence Medium Intensity and Eddy Viscosity Ratio
Boundary - R1 to R1 Periodic 1 Side 1
Type INTERFACE
Location PeriodicA Blade1
Settings
Mass And Momentum Conservative Interface Flux
Turbulence Conservative Interface Flux
Boundary - R1 to R1 Periodic 1 Side 2
Type INTERFACE
Location PeriodicB Blade1
Settings
Mass And Momentum Conservative Interface Flux
Turbulence Conservative Interface Flux
Boundary - R1 Outlet
Type OUTLET
Location Outflow Blade1
Settings
Flow Regime Subsonic
Mass And Momentum Mass Flow Rate
     Mass Flow Rate mflow/nblades
Boundary - R1 Blade
Type WALL
Location Blade Blade1
Settings
Mass And Momentum No Slip Wall
Wall Roughness Smooth Wall
Boundary - R1 Hub
Type WALL
Location Hub Blade1
Settings
Mass And Momentum No Slip Wall
Wall Roughness Smooth Wall
Boundary - R1 Shroud
Type WALL
Location Shroud Blade1
Settings
Mass And Momentum No Slip Wall
     Wall Velocity Counter Rotating Wall
Wall Roughness Smooth Wall
 

4. Tabulated Results

The first table below gives a summary of the performance results for the fan. The second table lists the mass or area averaged solution variables and derived quantities computed at the inlet, leading edge (LE Cut), trailing edge (TE Cut) and outlet locations. The flow angles Alpha and Beta are relative to the meridional plane; a positive angle implies that the tangential velocity is the same direction as the machine rotation.

Table 6.  Performance Results
Rotation Speed -314.1590 [radian s^-1]
Reference Diameter 0.3972 [m]
Volume Flow Rate 1.7903 [m^3 s^-1]
Pressure Rise (IN-OUT) 2816.4900 [Pa]
Flow Coefficient 0.0909
Head Coefficient (IN-OUT) 0.1526
Shaft Power 5348.9300 [W]
Power Coefficient 0.0147
Total Efficiency (IN-OUT) % 94.2692
Static Efficiency (IN-OUT) % 48.7565
 
Table 7.  Summary Data
Quantity Inlet LE Cut TE Cut Outlet TE/LE TE-LE Units
Density 1.1850 1.1850 1.1850 1.1850 1.0000 0.0000 [kg m^-3]
Pstatic 101322.0000 101309.0000 103022.0000 103043.0000 1.0169 1713.8400 [Pa]
Ptotal 101586.0000 101556.0000 104434.0000 104403.0000 1.0283 2878.1400 [Pa]
Ptotal (rot) 101587.0000 101525.0000 101444.0000 101408.0000 0.9992 -81.5859 [Pa]
U 62.3665 62.3811 62.3926 62.3666 1.0002 0.0115 [m s^-1]
Cm 21.0170 22.6746 23.2062 21.9687 1.0234 0.5316 [m s^-1]
Cu -0.0018 -1.8338 -43.5155 -41.9804 23.7298 -41.6817 [m s^-1]
C 21.0180 23.9581 50.2084 48.1114 2.0957 26.2503 [m s^-1]
Distortion Parameter 1.0348 1.0468 1.0421 1.0181 0.9955 -0.0047
Flow Angle: Alpha 0.0143 -1.3080 52.8015 61.1564 -40.3686 54.1095 [degree]
Wu 62.3647 60.5475 18.8772 20.3862 0.3118 -41.6702 [m s^-1]
W 65.8549 64.7788 30.4240 30.4005 0.4697 -34.3548 [m s^-1]
Flow Angle: Beta -71.2857 -70.4581 -39.8472 -45.1070 0.5655 30.6109 [degree]
 

5. Blade Loading Charts


Chart 1.  Blade Loading at 20% Span
Chart 1. FanReport/Chart001.png
Chart 2.  Blade Loading at 50% Span
Chart 2. FanReport/Chart002.png
Chart 3.  Blade Loading at 80% Span
Chart 3. FanReport/Chart003.png

6. Streamwise Charts


Chart 4.  Streamwise Plot of Pt and Ps
Chart 4. FanReport/Chart004.png
Chart 5.  Streamwise Plot of C
Chart 5. FanReport/Chart005.png
Chart 6.  Streamwise Plot of W
Chart 6. FanReport/Chart006.png
Chart 7.  Streamwise Plot of Alpha and Beta
Chart 7. FanReport/Chart007.png

7. Spanwise Charts


Chart 8.  Spanwise Plot of Alpha and Beta at LE
Chart 8. FanReport/Chart008.png
Chart 9.  Spanwise Plot of Alpha and Beta at TE
Chart 9. FanReport/Chart009.png

8. Blade Geometry Plots


Figure 1.  Isometric 3D View of the Blade, Hub and Shroud
Figure 1 - FanReport/Figure001.png
Figure 2.  Meridional View of the Blade, Hub and Shroud
Figure 2 - FanReport/Figure002.png

9. Blade Mesh Plot


Figure 3.  Mesh Elements at 50% Span
Figure 3 - FanReport/Figure003.png

10. Blade to Blade Plots


Figure 4.  Contour of Pt at 50% Span
Figure 4 - FanReport/Figure004.png
Figure 5.  Contour of Ptr at 50% Span
Figure 5 - FanReport/Figure005.png
Figure 6.  Contour of Ps at 50% Span
Figure 6 - FanReport/Figure006.png
Figure 7.  Contour of W at 50% Span
Figure 7 - FanReport/Figure007.png
Figure 8.  Velocity Vectors at 20% Span
Figure 8 - FanReport/Figure008.png
Figure 9.  Velocity Vectors at 50% Span
Figure 9 - FanReport/Figure009.png
Figure 10.  Velocity Vectors at 80% Span
Figure 10 - FanReport/Figure010.png

11. Meridional Plots


Figure 11.  Contour of Mass Averaged Pt on Meridional Surface
Figure 11 - FanReport/Figure011.png
Figure 12.  Contour of Mass Averaged Ptr on Meridional Surface
Figure 12 - FanReport/Figure012.png
Figure 13.  Contour of Mass Averaged W on Meridional Surface
Figure 13 - FanReport/Figure013.png
Figure 14.  Vector of Area Averaged Cm on Meridional Surface
Figure 14 - FanReport/Figure014.png

12. Circumferential Plots


Figure 15.  Contour of Pt at Blade LE
Figure 15 - FanReport/Figure015.png
Figure 16.  Contour of Ptr at Blade LE
Figure 16 - FanReport/Figure016.png
Figure 17.  Contour of W at Blade LE
Figure 17 - FanReport/Figure017.png
Figure 18.  Contour of Pt at Blade TE
Figure 18 - FanReport/Figure018.png
Figure 19.  Contour of Ptr at Blade TE
Figure 19 - FanReport/Figure019.png
Figure 20.  Contour of W at Blade TE
Figure 20 - FanReport/Figure020.png

13. Streamline Plot


Figure 21.  Velocity Streamlines at Blade TE
Figure 21 - FanReport/Figure021.png

14. Noise Analysis

This analysis has been supplied to assist in the evaluation of tonal noise levels generated by low speed fans (Mach Number less than 0.4). The equations were obtained from available literature, however some equations may have alternate definitions. It is your responsibility to verify the accuracy of these definitions.

14.1. Noise input data

This data is based on the input to the Fan Noise macro. To change the input values, select Turbo tab > Fan Noise macro, change parameters and select Calculate to re-generate the report.

Table 8.  Noise input data
Domain R1  
Blade Region Blade Blade1  
Number of Blade Rows 28
Angular Velocity -314.1590 [radian s^-1]
Number of Harmonics 6
Observer Location (radius) 1.0000 [m]
Observer Location (theta) 0.0000 [degree]
Loading Coefficient 2.2000
Reference Pressure 2.0000e-05 [Pa]
Reference Power 1.0000e-11 [W m^-3]
Rotational Mach Number 0.1834
 

14.2. Sound Pressure Levels

Table 9.  Sound Pressure Levels
Harmonic Frequency [Hz] Sound Pressure Level - Lp [dB]
1 1399.9988 83.3020
2 2799.9976 76.0773
3 4199.9961 71.8511
4 5599.9951 68.8525
5 6999.9937 66.5267
6 8399.9922 64.6264
 
Chart 10.  Sound Pressure Levels
Chart 10. FanReport/Chart010.png

14.3. Sound Power Levels

Table 10.  Sound Power Levels
Harmonic Frequency [Hz] Sound Power Level - Lp [dB]
1 1399.9988 84.2627
2 2799.9976 77.0380
3 4199.9961 72.8118
4 5599.9951 69.8133
5 6999.9937 67.4874
6 8399.9922 65.5871
 
Chart 11.  Sound Power Levels
Chart 11. FanReport/Chart011.png

14.4. Directivity

Chart 12.  Directivity
Chart 12. FanReport/Chart012.png

14.5. Overall Noise

Table 11.  Overall Noise
Sound Pressure Level [dB] 84.5455
Sound Power Level [dB] 85.5062
 

14.6. Broadband Noise

Broadband noise model is derived from Proudman's formula (see expression Proudman Sound Power Exp), which predicts overall sound power. Associated variable (Proudman Sound Power) is evaluated on the entire domain, allowing visualization of isosurfaces that can be used to locate the portion of the flow that is responsible for noise generation.

Note that this model predicts overall noise levels, not at a specific observer location.

Table 12.  Proudman Sound Power
Minimum 3.8 [dB]
Maximum 79.8 [dB]
Average 30.7 [dB]
Total Power 2.7146e-10 [W]
 
Figure 22.  Isosurface at 95% of Proudman Sound Power
Figure 22 - FanReport/Figure022.png

14.7. Noise Sources

This section reports on Monopole, Dipole and Quadrupole noise sources, derived from Ffowcs Williams and Hawkings (FW-H) equations. These sources can be compared with each other and with the broadband noise to determine the dominant noise source in the design.

Monopole source is related to the movement of the source surface. It defines the volume displacement of the source. It is usually called self noise.

Dipole source describes the interaction between the fluid and the surface of the source. It defines the loading fluctuations exerted on the surface.

Quadrupole source is related to the turbulence fluctuation levels of the fluid. It is also called self noise.

Table 13.  Summary of noise sources at the blade and at the final timestep
  Monopole Source Strength Dipole Source Strength  
Minimum 0.0 -3562.6 [Pa]
Maximum 85.7 3906.8 [Pa]
Average 40.9 669.6 [Pa]
 
Figure 23.  Monopole Source
Figure 23 - FanReport/Figure023.png
Figure 24.  Dipole Source
Figure 24 - FanReport/Figure024.png
Table 14.  Summary of quadrupole sources at the final timestep
  Quadrupole Source Strength  
Minimum 0.1 [Pa]
Maximum 3883.5 [Pa]
Average 902.4 [Pa]
 
Figure 25.  Isosurface at 80% of Quadrupole Source Strength
Figure 25 - FanReport/Figure025.png